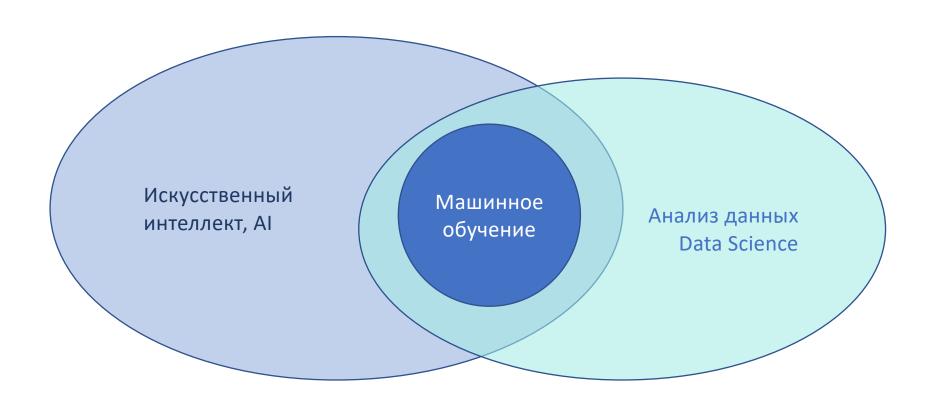
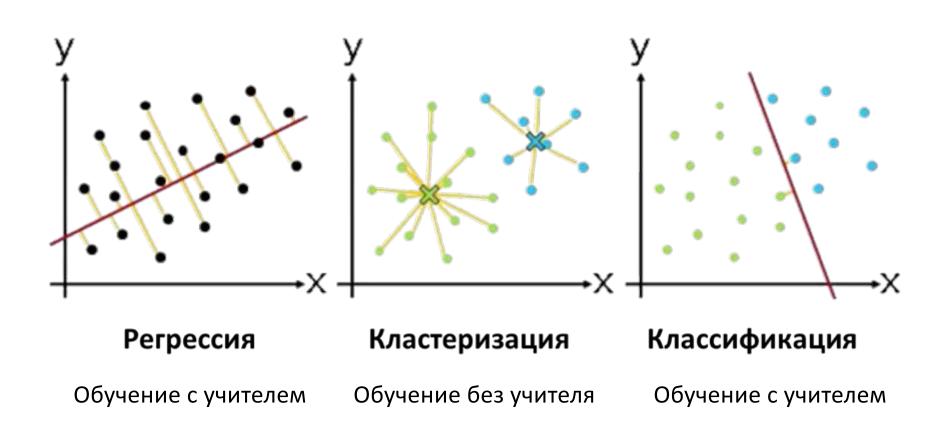
ПОДХОДЫ И ТЕХНОЛОГИИ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В ОБРАЗОВАНИИ

Дерябин Андрей Александрович научный сотрудник сектора «Открытое образование» ФИРО РАНХиГС

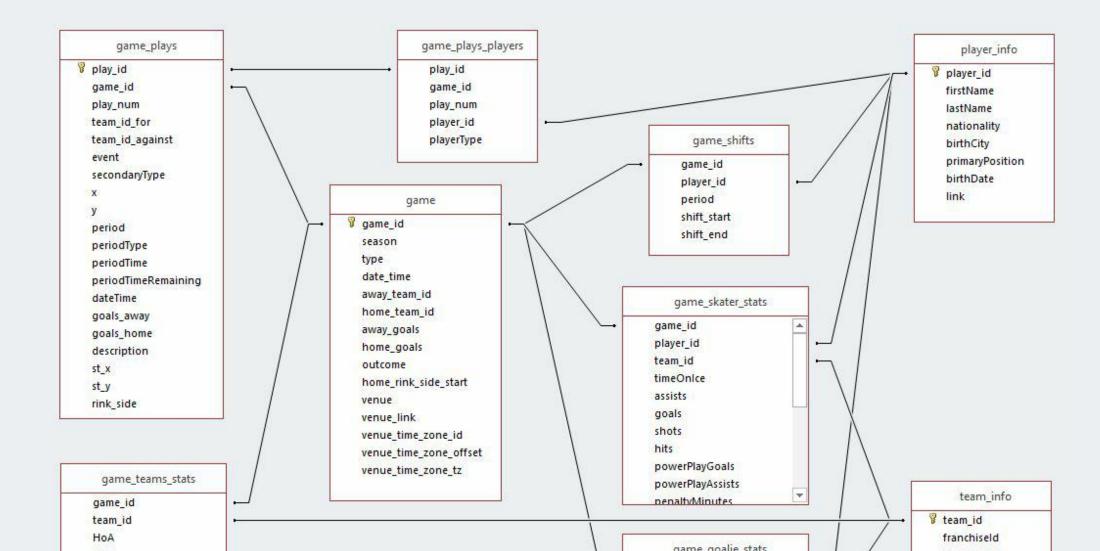
Попов Александр Анатольевич д.ф.н., заведующий Научно-исследовательским сектором «Открытое образование», Научно-исследовательский центр социализации и персонализации образования детей


09.09.2020

Вебинар в рамках НИР "Применение средств анализа данных при поддержке выбора учащимися образовательной и карьерной траекторий»


Содержание

- 1. Интеллектуальные тьюторские системы и адаптивное обучение
- 2. Искусственный интеллект в образовании: индустриальное видение
- 2.1. Педагогическая модель
- 2.2. Модель учащегося
- 3. Интеллектуальный анализ данных и образовательная аналитика
- 4. Политическая экономия больших данных в образовании
- 4.1. Стейкхолдеры внедрения искусственного интеллекта
- 4.2. Капитализация больших данных


DS, ML, AI: понятия

Стандартные задачи ML

Пространство признаков

Зачем ИИ в образовании?

С ИИО связаны надежды на то, что он:

- обеспечит методологию, которая позволит учесть буквально все возможные факторы, влияющие на обучение (big data);
- позволит создавать индивидуальный многомерный профиль учащегося;
- и на основе его персонализировать обучение, таким образом, обеспечив максимально эффективное для каждого конкретного индивида обучение.

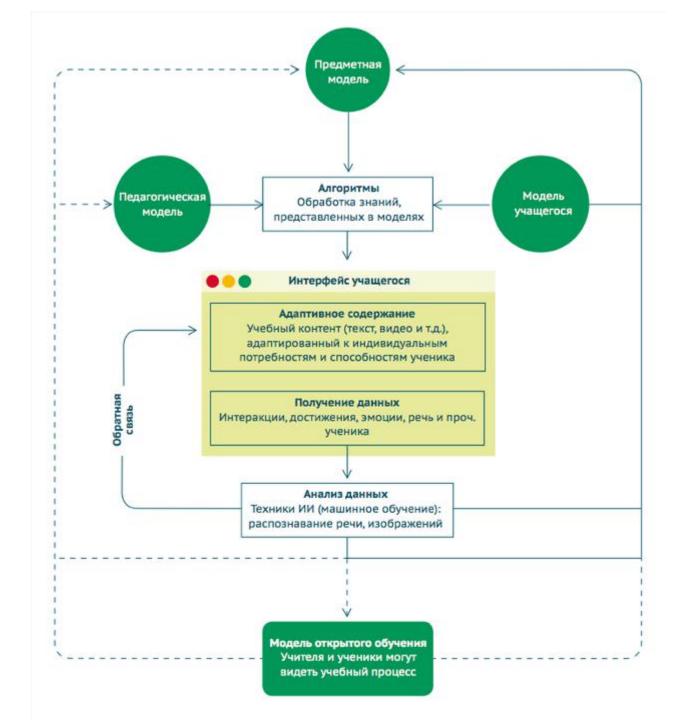
Интеллектуальные тьюторские системы и адаптивное обучение

Пример: содержание вебсайта магазина или онлайн-кинотеатра.

- **Адаптивность** способность сайта менять свое поведение в зависимости от характеристик пользователя и его действий.
- Динамическая адаптация контент сайта адаптируется в реальном времени («вы недавно смотрели...»), предполагает реакции системы на действия пользователя и обновление данных о нем.
- Известно, какой продукт мы покупали ранее + наши персональные данные + поведение на сайте (куда ходили, на что нажимали).
- Предмет адаптации содержание сервиса, он каждый раз адаптируется под наши действия и предпочтения. Рекомендательная система предлагает нам те товары, которые, вероятно, мы купим.

- 1. Модель покупателя (пол, возраст, география, вкусовые предпочтения и т.д.)
- 2. Модель товара (жанр, год, режиссер, актеры)
- 3. Модель стратегия продаж, представленная в логике предъявления контента покупателю

Интеллектуальные тьюторские системы и адаптивное обучение


Интеллектуальные тьюторские системы

- **Адаптивность** способность системы менять свое поведение в зависимости от характеристик, предусмотренных моделью учащегося, и его действий
- Динамическая адаптация предполагает реакции системы на действия уч-ся и обновление данных о нем в реальном времени.
- Статические (гендер) и динамические характеристики
- Предмет адаптации учебный материал, т.е. каждому пользователю предъявляется адаптированное под него содержание (текст, изображения, видео, аудио, анимация и проч.).

1. Модель учащегося (признаки 1...k)

2. Модель предмета (признаки 1...m)

Педагогическая модель (признаки 1...n)

1. Модель учащегося

2. Модель предмета

3. Педагогическая модель

Модели ИИО

Модель ИИО	Что репрезентирует	Содержание модели (примеры)
Педагогическая модель	модель Знания педагогики и образовательная экспертиза	"Продуктивное незнание», стимулирующее учащегося изучать учебный материал до того, как ему будет показан «правильный» ответ; Обратная связь (вопросы, советы), запускаемая действиями уч-ся и направленная на помощь ему; Оценка результатов обучения.
Модель предметной области	Предметные знания	Целое и части, сложение и вычитание; Второй закон Ньютона; Причины I Мировой войны; Подходы к работе с текстом.
Модель учащегося	Знания об учащемся	Предыдущие достижения и трудности; Эмоциональное состояние; Вовлеченность в обучение (напр., время работы над задачей).

Модель учащегося (пример)

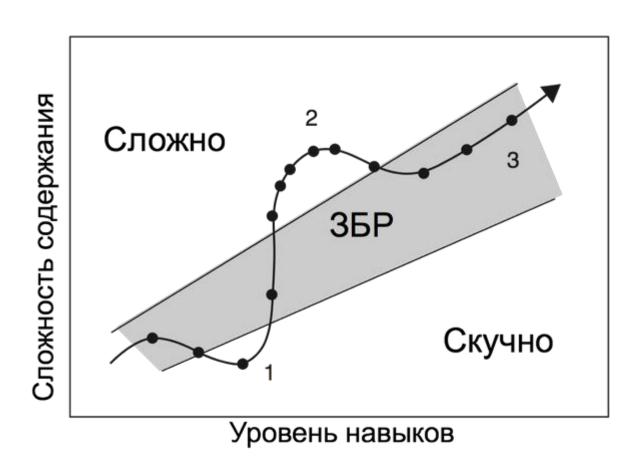
Abyaa, A., Khalidi, M., Bennani, S. (2019). Learner modelling: systematic review of the literature from the last 5 years // Education Tech Research Dev. 67.

- 1. Профиль или личная информация и статические данные, такие как имя, возраст и пол.
- 2. Знания: уровень знаний, компетенции, навыки, пробелы в знаниях.
- 3. Когнитивные характеристики учащегося, напр., способность к запоминанию, мышление.
- 4. Социальные характеристики социальные взаимодействия, культура, социальный стиль (коллаборативный или индивидуалистический).
- 5. Личностные качества например, «большая пятерка»
- 6. Мотивация интересы, цели обучения, вовлеченность и эмоции.

Педагогическая модель/дизайн

Педагогический дизайн (Instructional Design) — дисциплина о системном подходе к организации образовательного процесса, применяемая с целью создания эффективной образовательной среды, для разработки и оценки обучающих материалов.

Доминирующие теории:


- саморегулируемое обучение: Б.Циммерман
- различные подходы, связанные с мотивацией: теория ожиданий и ценностей Аткинсона, мотивация к достижениям, социокогнитивная перспектива и др.
- подходы социального конструктивизма: Л.С.Выготский и Ж.Пиаже

Педагогический дизайн: что измеряют?

	Авторы	Среда обучения	Методы анализа	Данные	Метрики успеваемости
	Bos & Brand- Gruwel (2016)	LMS, смешанный курс	- кластеризация- множественная регрессия	Время просмотра записанных лекций, число формативных оцениваний, время в LMS, число кликов в LMS (на объявлениях, видео, оценках и т.п.)	Оценивание в середине и в конце курса, самоотчет по стилям обучения
	Jovanović et al., (2017)	Перевернуты й класс	- анализ учебной последовательност и	Число верно и неверно решенных суммативных и формативных элементов оценивания, число запрошенных решений, просмотренных видео, обращений к контенту, табло и расписанию	Экзаменационные оценки в середине и конце периода
	Kizilcec at al., (2017)	MOOC	- модели логистической регрессии - графы переходов	Число переходов между состояниями взаимодействия (напр., начать и закончить смотреть видео) и время, затраченное на каждый тип учебного материала, число материалов, с которыми взаимодействовал	Цели прохождения курса (получить сертификат, сделать все задания, посмотреть все лекции), самоотчет о саморегулируемом обучении

Пример: операционализация 3БР для ITS

- нахождение в ЗБР ~ оптимальное число запросов учеников на подсказки
- «скучно» слишком мало подсказок
- «сложно» слишком много подсказок
- тьютор адаптирует материал, когда видит отклонение числа запросов от оптимума

Murray, T. & Arroyo, I. (2002) Toward Measuring and Maintaining the Zone of Proximal Development in Adaptive Instructional Systems / 2002 International Conference on Intelligent Tutoring Systems.

Интеллектуальный анализ данных и образовательная аналитика

• Интеллектуальный анализ данных в образовании (Educational Data Mining).

извлечение из образовательных статистических данных ранее неизвестных нетривиальных и практически полезных знаний, которые позволяют делать выводы и строить прогнозы относительно успеваемости учащихся. Фокус на поиск новых технологических методов.

• Образовательная аналитика (Learning Analytics). измерение, сбор, анализ и представление данных об учениках и образовательных процессах с целью понимания и оптимизации обучения и условий, в которых оно происходит. Фокус на практических образовательных задачах, дизайне конкретного образовательного продукта.

Пример образовательной аналитики

Яндекс.Репетитор https://www.youtube.com/watch?v=MrtUeCKSIYg

Данные для аналитики: 30,000 задач, решенные 70 миллионов раз.

- Пользователь описывается рядом статистик: к-во решенных задач, к-во нетривиальных решений, к-во верных решений.
- Характеристика сложности задач: отношение правильных решений к общему числу. Известно, как то или иное слово в условии вносит вклад в сложность задачи.
- Эмпирически установлено, что если школьника «не трогать», он решает задачи одной и той же сложности. Рекомендательная система дает все более сложные задачи, и школьник решает их все более успешно.

Некоторые области аналитики

- Совместное обучение (количественно измеряемые взаимодействия на основе лог-файлов образовательных платформ)
- Самообучение (метрики поведения, кодированные самоописания, тесты)
- Оценка обучающих материалов (кодированные реакции учеников на содержание курсов)
- Оценка и мониторинг обучения (машинная обработка текстов, проверка и предсказания оценки текстовых работ уч-ся)
- Предсказание отсева и успеваемости (старейшая и наиболее проработанная область; очень много предсказывающих метрик)

Отмечается недостаток работ по анализу поведения, эмоций учащегося и эффективности преподавателя.

Перспективы и проблемы ИИО

- Проблема оценки: переход от периодич. стандартизованной оценки к оценке инд.обр.траектории; к непрерывному автоматич.анализу учебной деятельности, встроенной в процесс обучения
- Меняющиеся критерии качества образования. «Навыки XXI века»: сложность алгоритмизации, отсутствие методик.

- Надежды на биометрию и нейронауки в классе (голос, направление взгляда, жесты). А как же приватность?
- Надежды на накопление больших массивов образовательных данных

Кто владеет большими данными и теорией?

1. Как следует переосмыслить образование в связи с алгоритмическими методами и эпистемологией науки о данных?

- с точки зрения разработчиков ИИО, аналитика big data выявляет несоответствие между паттернами обучения и существующими концепциями для их объяснения
- полагают, что большие данные откроют возможности для создания новых теорий обучения.
- Коммерческая индустрия ИИО постепенно аккумулирует «методологический капитал», который дает ей возможность получить преимущество перед другими методами и подходами к исследованию обучения.
- «невообразимая эффективность данных», отменяет необходимость во всякой теоретизации образования со стороны научного сообщества?

- 2. Какие последствия имеет концентрация больших образовательных данных и знаний в руках коммерческих организаций?
- Коммерческие компании наиболее эффективны в разработке и подготовлены к массовому внедрению ИИО. Есть ресурсы и рыночные императивы.
- Источниками новых знаний и теорий обучения будут акторы, располагающие экономическим, социальным и культурным капиталом, генерирующие знание на основе анализа больших данных.
- Тренд «управление на основе данных» легитимирует и признает эффективными те управленческие решения, которые апеллируют к «жесткой статистике».
- Частные ИИО-компании, а не академические институты могут стать одобренными правительством площадками образовательной экспертизы.

Williamson, B. Who owns educational theory? Big data, algorithms and the expert power of education data science // E-Learning and Digital Media, 0(0), 2017. Pp. 1–18.

«Черный ящик» vs. «Объяснимый ИИ»

Проблема доверия.

Мы не всегда понимаем, почему та или иная переменная в датасете оказывается предиктором. Проблема объяснения или интерпретации работы модели, aka проблема «черного ящика».

Вместе с тем модель машинного обучения работает и принимает педагогические и организационные решения, например, предлагает учащемуся адаптированный контент или сигнализирует о проблемах учащегося.

«Объяснимый ИИ»: интерпретируемость ИИ – это степень, в которой человек может понять причины принятого ИИ решения или предсказать результат работы модели машинного обучения.

O obsolete before plateau

As of July 2020

more than 10 years

O less than 2 years

2 to 5 years

5 to 10 years

Спасибо.

Контакты:

Дерябин A.A. deryabin-aa@ranepa.ru

Попов А.А. +7 (495) 409 91 10

Facebook: id 1289786350

Вконтакте: vk.com/aa_popov

Сайт: www.opencu.info